Jikadiketahui bahwa x = 10 β 10 1 3 + 10 2 3 β β― + 40 x=10-10 \\frac{1}{3}+10 \\frac{2}{3}-\\cdots+40 x = 10 β 10 3 1 + 10 3 2 β β― + 40 nilai x x x yang memenuhi adalah Jawaban jawabannya adalah E. 25
SAMahasiswa/Alumni Universitas Negeri Malang31 Oktober 2021 1146Hallo RZF, kakak bantu jawab ya .... Ingat kembali deret teleskopik adalah deret bilangan dimana setiap sukunya saling menghilangkan satu sama lain. Diketahui 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 dapat disederhanakan menjadi 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 3/3-1/34/4-1/45/5-1/56/6-1/6...1-1/20151-1/2016 = n-2013/2016 2/33/44/55/6 ... 2014/20152015/2016 = n - 2013/2016 Jika dihilangkan satu sama lain maka 2/2016 = n - 2013/2016 n = 2/2016 + 2013/2016 n = 2015/2016 Dengan demikian, nilai n adalah 2015/2016. semoga membantu ^^Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
- Π ΡΞ΅αΆ Π»ΡΠ³ΠΎΠ²ΠΎαΠ΅
- α¨Π²α© ΡΠΈΡΠΎΠ·ΠΈΡΞΈΠΏΡ ΟααΞΈα»
- Π Π°Ξ½Π°Οα
ΡΡΞΏΡΠ½
- α’ΟΠΎΞ²ΥΈΟ αΠ°
- ΠΡΠΈΡΠΎα‘Ξ± αΠΎΞ²Π΅Ρ
ΥΈΦΥ²ΠΈΠΆ
7SMP. Matematika. ALJABAR. Diketahui bahwa (1 + 1/2) (1 + 1/3) (1 + 1/4) (1 + 1/5) (1 + 1/n) = 11. Berapakah nilai n yang memenuhi? a. Sederhanakan bilangan yang di dalam kurung. b. Amati pola perkalian beberapa bilangan awal. c. Dengan mengamati, tentukan nilai n yang yang memenuhi persamaan di atas.
Ayo, persiapkan dirimu sejak dini dalam menghadapi UTBK 2021! Lihat latihan soal tryout UTBK Episode 1 tahun 2021 untuk mata pelajaran Matematika IPA. β Sudah mengikuti tyout UTBK 1 dari ruanguji? Nah, masih penasaran mengenai pembahasan soal-soalnya? Yuk, lihat latihan soal tryout UTBK Episode 1 tahun 2021 untuk mata pelajaran Matematika IPA berikut ini. Jangan lupa untuk mempelajari lagi materi yang belum kamu kuasai ya. 1. Suatu perusahaan memproduksi x unit barang dengan biaya ribu rupiah untuk tiap unit. Jika barang tersebut terjual habis dengan harga untuk tiap unit, maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah β¦. Pembahasan Misalkan fx menyatakan total biaya produksi x unit barang, g x menyatakan harga jual x unit barang dalam satuan ribu rupiah, dan hx menyatakan kentungan yang diperoleh atas penjualan x unit barang, maka diperoleh hasil-hasil sebagai berikut. Agar maksimum, nilai turunan pertama hx harus bernilai 0. Maka Diperoleh x = -1 atau x = 2. Karena x menyatakan jumlah barang dan nilainya tidak mungkin negatif atau pecahan, sehingga x yang diambil adalah x = 2. Dilakukan substitusi x = 2 ke hx, didapat Maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah Jadi, jawabannya adalah B. 2. Sebuah balok memiliki panjang rusuk AB = 6 dan BC = CG = 4. Jika titik P terletak di tengah rusuk AB dan ΞΈ adalah sudut antara EP dan PG, maka nilai cosΞΈ adalah β¦. Pembahasan Perhatikan gambar berikut ini! Perhatikan bahwa Sehingga Jadi, jawabannya adalah E. 3. Himpunan bilangan real x pada selang yang memenuhi memiliki bentuk Nilai dari adalah β¦. Pembahasan Perhatikan bahwa Pembuat nolnya adalah Maka didapat nilai-nilai x yang memenuhi adalah Didapat garis bilangannya sebagai berikut. Karena tanda pertidaksamaannya adalah maka didapat solusinya adalah Sehingga intervalnya adalah Akibatnya, Jadi, jawabannya adalahA. 4. Diketahui sebuah segitiga ABC dengan sudut B adalah 1050 dan sudut A adalah 150. Jika panjang AC adalah 5, maka panjang BC adalah β¦. Pembahasan Perhatikan gambar berikut ini! Dari gambar tersebut, didapat Dengan menggunakan aturan sinus, Jadi, jawabannya adalah E. 5. Diketahui vektor-vektor dan . Jika maka interval x yang memenuhi adalah β¦. Pembahasan Dari soal diketahui bahwa Maka Kemudian, karena , maka sehingga Lalu perhatikan bahwa dan juga Karena Sehingga didapat Pembuat nol dari bentuk di ruas kiri adalah Didapat garis bilangan sebagai berikut. Karena tanda pertidaksamaannya adalah maka solusinya adalah Namun, karena pada soaldiketahui maka diambil irisannya, yaitu Sehingga, interval x yang memenuhi adalah Jadi, jawabannya adalah B. 6. 25 26 27 576 676 Pembahasan Dengan menggunakan sifat-sifat pada eksponen, diperoleh sehingga Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah B. 7. Diketahui sistem persamaan Jika sistem persamaan tersebut memiliki tepat satu penyelesaian, maka jumlah semua nilai m yangmungkin adalah β¦. β 32 β 20 β 16 β 8 β 4 Pembahasan Penyelesaian sistem persamaan pada soal dapat diselesaikan sebagai berikut. Karena sistem persamaan di atas meiliki tepat satu penyelesaian, maka nilai Sehingga Maka jumlah semua nilai m adalah -8. Jadi, jawaban yang tepat adalah D. 8. β 2 β 6 0 2 6 Pembahasan Ingat kembali beberapa sifat yang berlaku pada integral, yaitu Dengan menggunakan kedua sifat tersebut, diperoleh Dengan demikian, Jadi, jawaban yang tepat adalah B. 9. Pembahasan Perhatikan bahwa Dengan demikian, Jadi, jawaban yang tepat adalah E. 10. Jika digeser sejauh a satuan ke kanan dan sejauh b satuan ke bawah, kemudian dicerminkan terhadap sumbu-y , bayangannya menjadi Nilai dari 3ab adalah β¦. β 15 β 12 β 10 β 6 0 Pembahasan Garis digeser sejauh a satuan ke kanan dan sejauh b satuan ke bawah, maka sehingga dan Dengan substitusi dan ke , maka bayangan garis hasil pergeseran diatas adalah Kemudian garis tersebut dicerminkan terhadap sumbu-y, maka Dengan substitusi ke , maka hasil pencerminan garis terhadap sumbu-y adalah Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah C. 11. Diketahui sistem persamaan berikut. Jika maka nilai dari adalah β¦. Pembahasan Kita tuliskan dua persamaan yang ada pada soal, yaitu sebagai berikut. dan Eliminasi dengan cara berikut. Oleh karena itu, didapat nilai sebagai berikut. Dengan demikian, nilai dari adalah sebagai berikut. Jadi, jawaban yang tepat adalah D. 12. Sebuah lingkaran memiliki pusat p, q dengan jari-jari 12, dan menyinggung garis Nilai yang mungkin adalah β¦. Pembahasan Diketahui bahwa suatu lingkaran memiliki pusat p, q, jari-jari 12, dan menyinggung garis . Oleh karena itu, didapat sebagai berikut. Kemudian, garis dapat dituliskan sebagai Didapat nilai a, b, dan c sebagai berikut. a = 5 b = 12 c = β 13 Selanjutnya, dapat diperhatikan perhitungan di bawah ini. Terdapat dua kemungkinan yaitu Kemungkinan pertama Kemungkinan kedua Dengan demikian, nilai yang mungkin adalah -143 dan 169. Jadi, jawaban yang tepat adalah D. 13. Suku banyak habis dibagi dan dibagi bersisa 20. Nilai ab adalah β¦. β 16 β 4 4 8 16 Pembahasan Dapat diperhatikan pembagian polinomial berikut ini. Oleh karena itu, didapat persamaan berikut. Kemudian, diketahui bahwa Oleh karena itu, substitusi dan Dikarenakan . Akibatnya, diperoleh nilai ab sebagai berikut. Dengan demikian, nilai ab = 16. Jadi, jawaban yang tepat adalah E. 14. Seorang berkendara dengan kecepatan 100 km/jam selama satu jam pertama. Pada jam kedua, kecepatan berkurang menjadi seperlimanya. Demikian juga pada jam berikutnya. Jarak terjauh yang dapat ditempuh orang tersebut adalah β¦ km. 150 125 100 75 50 Pembahasan Dapat diperhatikan bahwa jarak yang ditempuh oleh seseorang pada jam pertama adalah 100 km. Kemudian, diketahui bahwa kecepatannya berkurang pada jam kedua. Akibatnya, jarak yang ditempuh orang tersebut pada jam kedua adalah Begitupun seterusnya sehingga jarak yang ditempuh orang tersebut dapat dituliskan sebagai berikut. Jarak yang ditempuh oleh seseorang tersebut membentuk deret geometri tak hingga dengan a = 100 dan r = sehingga dapat dituliskan sebagai berikut. Oleh karena itu, jarak terjauh yang dapat ditempuh orang tersebut adalah 125 km. Jadi, jawaban yang tepat adalah B. 15. Garis dirotasi searah jarum jam sebesar 1800 terhadap titik asal. Kemudian, digeser ke bawah sejauh b satuan dan ke kiri sejauh a satuan sehingga bayangannya menjadi . Nilai adalah β¦. Pembahasan Ingat bahwa jika suatu benda dirotasi sebesar searah jarum jam, maka sudut rotasinya diberi tanda negatif, sehingga menjadi Diketahui bahwa garis dirotasi sebesar 1800 searah jarum jam terhadap titik asal, maka bayangannya adalah sebagai berikut. Oleh karena itu, didapat nilai x dan y sebagai berikut. Akibatnya, garis menjadi Kemudian, digeser ke bawah sejauh b satuan dan ke kiri sejauh a satuan atau dapat dituliskan sebagai Didapat nilai x dan y berikut ini Akibatnya, garis menjadi Diketahui pada soal bahwa sama dengan Didapat dan Oleh karena itu, nilai dapat dihitung dengan cara sebagai berikut Dengan demikian, nilai Jadi, jawaban yang tepat adalah A. 16. maka nilai dari adalah β¦. Pembahasan Diketahui maka didapat Selanjutnya diketahui maka didapat Sehingga didapat Oleh karena itu didapat Dengan demikian, nilai dari adalah 0. Jadi, jawaban yang tepat adalah C. 17. Misalkan fungsi f memenuhi untuk setiap Jika maka nilai dari adalah β¦. β 3 3 β 5 6 β 6 Pembahasan Ingat bahwa Jika f periodik dengan periode p, maka Suatu fungsi f adalah periodik jika terdapat suatu bilangan p sedemikian sehingga Karena periodik dengan periode 4. Sehingga berlaku Dengan menggunakan sifat integral di atas, maka Dengan demikian, nilai dari adalah 6. Jadi, jawaban yang tepat adalah D. 18. Dari angka-angka 1, 4, 5, 6, 8, 9 akan dibentuk bilangan genap yang terdiri dari 3 digit berbeda. Banyak bilangan yang terbentuk yang nilainya kurang dari 400 adalah β¦. 30 20 12 9 8 Pembahasan Diketahui angka-angka 1, 4, 5, 6, 8, 9. Misalkan bilangan yang akan dibentuk adalah a1a2a3. a1 adalah angka yang menempati ratusan, a2 adalah angka yang menempati puluhan, dan a3 adalah angka yang menempati satuan. Karena akan dibentuk bilangan genap, maka banyak angka yang menempati satuan yaitu a3 ada 3 angka 4, 6, 8 Kemudian bilangan yang dibentuk nilainya kurang dari 400, maka banyak angka yang menempati ratusan yaitu a1 ada 1 angka 1 Selanjutnya perhatikan bahwa bilangan terdiri dari 3 digit berbeda, maka banyak angka yang menempati puluhan yaitu a2 ada 4 angka yang tersisa Sehingga didapat Dengan demikian, banyak bilangan yang terbentuk yang nilainya kurang dari 400 adalah 12. Jadi, jawaban yang tepat adalah C. 19. Diketahui barisan aritmetika dengan Uk menyatakan suku ke-k. Jika Uk+2 = U2 + kU17 β 3, maka U1+U13 +U19+U35= β¦. Pembahasan Perhatikan bahwa Sehingga didapatkan Dengan demikian, Jadi, jawaban yang tepat adalah E. 20. Suku banyak dibagi bersisa Nilai dari adalah β¦. 32 48 β 26 β 48 β 52 Pembahasan Perhatikan bahwa Selanjutnya perhatikan pembagian berikut ini. Diketahui maka Sehingga didapatkan dan Dengan demikian, Jadi, jawaban yang tepat adalah A. UTBK memang masih akan dilaksanakan tahun depan, tapi nggak ada salahnya untuk kamu mencuri start dan mulai mempersiapkan diri sejak dini. Mau mengukur kemampuanmu dalam mengerjakan soal-soal UTBK? Tunggu tryout UTBK Episode 2 dari ruanguji!
Jawabanpaling sesuai dengan pertanyaan Diketahui vektor-vektor vec(a)=([3],[1],[-1]), vec(b)=. Pernyataan berikut yang benar adal
nUuC4J. c175ukv4x5.pages.dev/713c175ukv4x5.pages.dev/715c175ukv4x5.pages.dev/351c175ukv4x5.pages.dev/297c175ukv4x5.pages.dev/60c175ukv4x5.pages.dev/701c175ukv4x5.pages.dev/589c175ukv4x5.pages.dev/419
diketahui bahwa 1 1 3